
Overview 
Sec$on 1 

Initially, I ran some python code to normalise the Spotify features and compute z scores to 
get an idea of top features that may help to discern patterns from the data. 

1 z_i_loudness 18263.640 
2 z_i_energy 15708.758 
3 z_i_danceability 14454.510 
4 z_i_mode 12625.000 
5 z_i_tempo 12105.081 

The top 3 features from the Python script output were ‘loudness’, ‘energy’ and 
‘danceability’. I noticed in Weka while using different attribute evaluator functions that 
‘acousticness’, ‘speechiness’ and ‘intrumentalness’ features were often ranked higher in this 
regard while not ranked highly by my script (due to these features having less difference 
between min and max of column).  

I completed my initial analysis in R. I have taken these features into account while using 
Euclidean distance and Hierarchical clustering to segment data from each genre into 5 
clusters or groups to help identify a pattern like outliers for Latin music samples or a 
lower/smaller cluster graph in Rock music for ‘speechiness’ (more instrumental) whereas as 
Rap has a higher rate of ‘speechiness’, EDM has higher rates of ‘energy’ but less 
‘acousticness’, higher rates of danceability in Pop and EDM etc can be inferred from the 
plots and data alike. I found this very interesting as I am a Spotify user with an eclectic taste 
in music.  

Then, I ran the 3 classifiers individually without combination rule(s) via Voting and no 
bagging. 



 

Enabling weighting for KNN made no difference, see Weka console output in zip attached. 

When we look at TP and FP rates by genre - it appears Pop and Latin were the most difficult 
genres to classify whereas Rock, Rap and EDM were the most straight forward. 

Neural network - Multilayer Perceptron (NN MP) was particularly strong at correctly 
classifying Rock, Rap and EDM samples and so was the best overall. 

KNN was best at classifying Latin music samples (weighting made no difference), followed 
closely by decision tree (J48). However KNN was a bad measure overall for this data, J48 was 
better than KNN but not as good as NN MP. 

MP NN was just about the best for Pop music samples but the difference between the 3 
classifiers correctly classifying an observation was negligible for Pop samples. The ROC Area 
plot for Latin is clearly not as good a measure as say for example the equivalent for Rock 
samples. The ideal ROC curve has an AUC equal to 1. So suffice to say Rock has a better 
measure when 0.906 (Rock) > 0.742 (Latin). 

TP Rate FPRate Precision Recall F-Measure MCC ROCArea PRCArea Class 

0.623 0.107 0.628 0.623 0.625 0.518 0.846 0.681 edm 

0.386 0.117 0.435 0.386 0.409 0.282 0.742 0.404 latin 

0.362 0.153 0.372 0.362 0.367 0.211 0.696 0.330 pop 

0.632 0.096 0.631 0.632 0.632 0.536 0.866 0.652 rap 

0.729 0.093 0.631 0.729 0.677 0.602 0.906 0.682 rock 



TP Rate FPRate Precision Recall F-Measure MCC ROCArea PRCArea Class 

0.547 0.113 0.541 0.547 0.543 0.431 0.811 0.552 WeightedAvg 

 

Latin ROC Plot / Threshold Curve 

 

Rock ROC Plot / Threshold Curve 

 

 





 

We can see from the above diagrams a depiction of 5 clusters per playlist genre. Latin 
appears to have the most outliers that are somewhat distant from the main cluster of 
points. 

I used the Weka vote ensemble to combine the decision tree (J48), NN MP and KNN(lbk 
where k=1) classifiers. I would like to compare the results of 3 combination rules:  

1. Majority Voting 



2. Average of Probabilities  

3. Product of Probabilities 

In addition, I ran for min/max  of probabilities combination rules but the results were 
inaccurate – there was more samples classified incorrectly than correctly for both of these 
as shown in the plot below. 

 

Majority voting was the most accurate followed closed by the average of probabilities. The 
product of probabilities was quite a bit less accurate in relative terms - 56% (Majority 
Vote):55% (Average of Probs.):50% (Product of Probs.) correctly classified. Product of 
probabilities only just had a positive classification rate of 50%:49%.  

 

We can now see that there is a benefit to use a combination of rules to classify this data. 
The subtleties of classifying Pop and Latin music in particular was troublesome for each 
classifier used. However overall and for Rap, Rock and EDM – Multilayer Perceptron appears 
to be the best option.  



I think majority voting performs best here because this gives each classifier an equal 
weighting to vote on what is the correct genre per record. The downside is that it took a 
long time to run all of this through Weka once NN MP was included, the runtime increased 
further with an increasing bag size for Weka runs for the next question. 

 

Sec$on 2 

I applied ensembles with bagging using the three classifiers from the previous task. All three 
classifiers had a significant improvement at the start which became more linear and 
predictable when increasing the bag size increments of 2.   

The biggest improvement was for J48 tree (59% correct:40% incorrect classification of 
samples). The NN MP also showed an improvement in accuracy. The KNN classifier where 
K=1 showed small improvement but still had more samples classified incorrectly than 
correctly when bag size was set to 20. Please see plot below to help give a better 
visualisation of this information.  

See relevant attachments for further information on workings and Weka console output. 
Note: This took quite some time to run with increasing bag size (number of iterations 2-> 
20) with 10-fold cross-validation. Due to this I have rushed some workings and descriptions. 

 

 



Sec$on 3 
Encourages diversity in the ensemble, works well for KNN and J48 decision trees (Random 
Forest). 
 
The performance improved greatly with the correctly classified samples rate jumping to 
58.5% with sub space size of 16. 
 
Console output: 
 
=== Run information === 
 
Scheme:       weka.classifiers.meta.Vote -S 1 -B "weka.classifiers.trees.J48 -C 
0.25 -M 2" -B "weka.classifiers.meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 -I 16 
-W weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0" -B 
"weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 
20 -H a" -B "weka.classifiers.lazy.IBk -K 1 -W 0 -A 
\"weka.core.neighboursearch.LinearNNSearch -A \\\"weka.core.EuclideanDistance -R 
first-last\\\"\"" -batch-size 2 -R MAJ 
Relation:     spotify-23211267 
Instances:    21812 
Attributes:   13 
              danceability 
              energy 
              key 
              loudness 
              mode 
              speechiness 
              acousticness 
              instrumentalness 
              liveness 
              valence 
              tempo 
              duration_ms 
              playlist_genre 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
Vote combines the probability distributions of these base learners: 
 weka.classifiers.trees.J48 -C 0.25 -M 2 
 weka.classifiers.meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 -I 16 -W 
weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0 
 weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -
S 0 -E 20 -H a 
 weka.classifiers.lazy.IBk -K 1 -W 0 -A 
"weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R 
first-last\"" 
using the 'Majority Voting' combination rule. 
. 
. 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances       12761               58.5045 % 
Incorrectly Classified Instances      9051               41.4955 % 
Kappa statistic                          0.4806 



Mean absolute error                      0.166  
Root mean squared error                  0.4074 
Relative absolute error                 51.9432 % 
Root relative squared error            101.9247 % 
Total Number of Instances            21812      
 
=== Detailed Accuracy By Class === 
 
                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  
PRC Area  Class 
                 0.668    0.108    0.640      0.668    0.654      0.552    0.780     
0.502     edm 
                 0.439    0.105    0.494      0.439    0.465      0.350    0.667     
0.323     latin 
                 0.362    0.133    0.406      0.362    0.383      0.239    0.614     
0.275     pop 
                 0.685    0.090    0.665      0.685    0.674      0.588    0.797     
0.520     rap 
                 0.770    0.083    0.670      0.770    0.717      0.652    0.844     
0.557     rock 
Weighted Avg.    0.585    0.104    0.576      0.585    0.579      0.476    0.740     
0.436      
 
=== Confusion Matrix === 
 
    a    b    c    d    e   <-- classified as 
 3260  379  721  329  190 |    a = edm 
  473 1809  799  732  311 |    b = latin 
  844  728 1583  410  812 |    c = pop 
  318  574  356 3088  175 |    d = rap 
  198  174  441   87 3021 |    e = rock 
 
 
 

 

 

Sec$on 4  
 
Bagging can ojen reduce the variance part of error and we see that as we increment bag 
size by 2. I think bagging is suited to more complex runs such as: Deep Decision Trees (J48) 
and NN MP with added complexity. It could be suitable for KNN when k is very low.  
 
I do not think it is suitable for small decision trees or simple linear models. 
 
Overall, I think it is best suited to NN MP as it can learn and model non-linear and complex 
relakonships, work well when training data is noisy and fast performance once a network is 
trained is possible.  
 



However, for NN MP, many training examples is probably needed. The training kme can be 
very long especially if added as a combinakon rule for vokng ensemble. It is also quite 
complicated and difficult to understand the internal workings unlike some other classifiers. 

 

Sec$on 5 

0.0339 (loudness) + 0.0778 (liveness) + 0.0001 (tempo). Tempo and loudness are significant 
variables for predicting energy values while liveness may not be a great source of info. 

• Liveness > 0.05 so normally would accept null hypothesis or insignificant relationship 
to energy. 

• Loudness and Tempo < 0.05 which is significant. 
• Tempo in particular seems to have a very significant relationship as it is much closer 

to zero. 

=== Run information === 
 
Scheme:       weka.classifiers.functions.LinearRegression -S 1 -R 1.0E-8 -num-
decimal-places 4 
Relation:     spotify-23211267 
Instances:    21812 
Attributes:   13 
              danceability 
              energy 
              key 
              loudness 
              mode 
              speechiness 
              acousticness 
              instrumentalness 
              liveness 
              valence 
              tempo 
              duration_ms 
              playlist_genre 
Test mode:    10-fold cross-validation  
 
=== Classifier model (full training set) === 
 
 
Linear Regression Model 
 
energy = 
 
     -0.1548 * danceability + 
      0.0004 * key + 
      0.0339 * loudness + 
     -0.0028 * mode + 
      0.0585 * speechiness + 
     -0.2387 * acousticness + 
      0.0904 * instrumentalness + 
      0.0778 * liveness + 



      0.1345 * valence + 
      0.0001 * tempo + 
      0      * duration_ms + 
      0.016  * playlist_genre=pop,latin,rock,edm + 
      0.0128 * playlist_genre=latin,rock,edm + 
      0.0298 * playlist_genre=rock,edm + 
      0.0057 * playlist_genre=edm + 
      0.9101 
 
Time taken to build model: 0.05 seconds 
 
=== Cross-validation === 
=== Summary === 
 
Correlation coefficient                  0.796  
Mean absolute error                      0.0822 
Root mean squared error                  0.105  
Relative absolute error                 58.826  % 
Root relative squared error             60.5253 % 
Total Number of Instances            21812 

Overall the correlation coefficient is > 0.7 so this represents a strong relationship between 
variables (ranges from -1 to 1 or weak to strong correlation).  

The smaller the p-value is, the more significant the factor is. P-value = 0.05 is a reasonable 
threshold. 

The P values for tempo, loudness and liveness is < 2.2e-16, this means a significant 
relationship with the response variable (energy) in the model as P value is much less than 
0.05. 

Call: 
lm(formula = energy ~ tempo + loudness + liveness, data = spotify_23211267) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.53589 -0.08146  0.00745  0.08633  1.25599  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 8.834e-01  4.736e-03  186.54   <2e-16 *** 
tempo       5.312e-04  3.237e-05   16.41   <2e-16 *** 
loudness    3.872e-02  2.877e-04  134.57   <2e-16 *** 
liveness    1.189e-01  5.382e-03   22.09   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1253 on 21808 degrees of freedom 
Multiple R-squared:  0.4783, Adjusted R-squared:  0.4782  
F-statistic:  6665 on 3 and 21808 DF,  p-value: < 2.2e-16 
 
                   2.5 %       97.5 % 
(Intercept) 0.8740980328 0.8926619375 
tempo       0.0004677832 0.0005946626 
loudness    0.0381533842 0.0392812685 



liveness    0.1083588727 0.1294589853 
 
 
0.1740097 
 

 

 

 


