
Overview
Sec$on 1

Initially, I ran some python code to normalise the Spotify features and compute z scores to
get an idea of top features that may help to discern patterns from the data.

1 z_i_loudness 18263.640
2 z_i_energy 15708.758
3 z_i_danceability 14454.510
4 z_i_mode 12625.000
5 z_i_tempo 12105.081

The top 3 features from the Python script output were ‘loudness’, ‘energy’ and
‘danceability’. I noticed in Weka while using different attribute evaluator functions that
‘acousticness’, ‘speechiness’ and ‘intrumentalness’ features were often ranked higher in this
regard while not ranked highly by my script (due to these features having less difference
between min and max of column).

I completed my initial analysis in R. I have taken these features into account while using
Euclidean distance and Hierarchical clustering to segment data from each genre into 5
clusters or groups to help identify a pattern like outliers for Latin music samples or a
lower/smaller cluster graph in Rock music for ‘speechiness’ (more instrumental) whereas as
Rap has a higher rate of ‘speechiness’, EDM has higher rates of ‘energy’ but less
‘acousticness’, higher rates of danceability in Pop and EDM etc can be inferred from the
plots and data alike. I found this very interesting as I am a Spotify user with an eclectic taste
in music.

Then, I ran the 3 classifiers individually without combination rule(s) via Voting and no
bagging.

Enabling weighting for KNN made no difference, see Weka console output in zip attached.

When we look at TP and FP rates by genre - it appears Pop and Latin were the most difficult
genres to classify whereas Rock, Rap and EDM were the most straight forward.

Neural network - Multilayer Perceptron (NN MP) was particularly strong at correctly
classifying Rock, Rap and EDM samples and so was the best overall.

KNN was best at classifying Latin music samples (weighting made no difference), followed
closely by decision tree (J48). However KNN was a bad measure overall for this data, J48 was
better than KNN but not as good as NN MP.

MP NN was just about the best for Pop music samples but the difference between the 3
classifiers correctly classifying an observation was negligible for Pop samples. The ROC Area
plot for Latin is clearly not as good a measure as say for example the equivalent for Rock
samples. The ideal ROC curve has an AUC equal to 1. So suffice to say Rock has a better
measure when 0.906 (Rock) > 0.742 (Latin).

TP Rate FPRate Precision Recall F-Measure MCC ROCArea PRCArea Class

0.623 0.107 0.628 0.623 0.625 0.518 0.846 0.681 edm

0.386 0.117 0.435 0.386 0.409 0.282 0.742 0.404 latin

0.362 0.153 0.372 0.362 0.367 0.211 0.696 0.330 pop

0.632 0.096 0.631 0.632 0.632 0.536 0.866 0.652 rap

0.729 0.093 0.631 0.729 0.677 0.602 0.906 0.682 rock

TP Rate FPRate Precision Recall F-Measure MCC ROCArea PRCArea Class

0.547 0.113 0.541 0.547 0.543 0.431 0.811 0.552 WeightedAvg

Latin ROC Plot / Threshold Curve

Rock ROC Plot / Threshold Curve

We can see from the above diagrams a depiction of 5 clusters per playlist genre. Latin
appears to have the most outliers that are somewhat distant from the main cluster of
points.

I used the Weka vote ensemble to combine the decision tree (J48), NN MP and KNN(lbk
where k=1) classifiers. I would like to compare the results of 3 combination rules:

1. Majority Voting

2. Average of Probabilities

3. Product of Probabilities

In addition, I ran for min/max of probabilities combination rules but the results were
inaccurate – there was more samples classified incorrectly than correctly for both of these
as shown in the plot below.

Majority voting was the most accurate followed closed by the average of probabilities. The
product of probabilities was quite a bit less accurate in relative terms - 56% (Majority
Vote):55% (Average of Probs.):50% (Product of Probs.) correctly classified. Product of
probabilities only just had a positive classification rate of 50%:49%.

We can now see that there is a benefit to use a combination of rules to classify this data.
The subtleties of classifying Pop and Latin music in particular was troublesome for each
classifier used. However overall and for Rap, Rock and EDM – Multilayer Perceptron appears
to be the best option.

I think majority voting performs best here because this gives each classifier an equal
weighting to vote on what is the correct genre per record. The downside is that it took a
long time to run all of this through Weka once NN MP was included, the runtime increased
further with an increasing bag size for Weka runs for the next question.

Sec$on 2

I applied ensembles with bagging using the three classifiers from the previous task. All three
classifiers had a significant improvement at the start which became more linear and
predictable when increasing the bag size increments of 2.

The biggest improvement was for J48 tree (59% correct:40% incorrect classification of
samples). The NN MP also showed an improvement in accuracy. The KNN classifier where
K=1 showed small improvement but still had more samples classified incorrectly than
correctly when bag size was set to 20. Please see plot below to help give a better
visualisation of this information.

See relevant attachments for further information on workings and Weka console output.
Note: This took quite some time to run with increasing bag size (number of iterations 2->
20) with 10-fold cross-validation. Due to this I have rushed some workings and descriptions.

Sec$on 3
Encourages diversity in the ensemble, works well for KNN and J48 decision trees (Random
Forest).

The performance improved greatly with the correctly classified samples rate jumping to
58.5% with sub space size of 16.

Console output:

=== Run information ===

Scheme: weka.classifiers.meta.Vote -S 1 -B "weka.classifiers.trees.J48 -C
0.25 -M 2" -B "weka.classifiers.meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 -I 16
-W weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0" -B
"weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E
20 -H a" -B "weka.classifiers.lazy.IBk -K 1 -W 0 -A
\"weka.core.neighboursearch.LinearNNSearch -A \\\"weka.core.EuclideanDistance -R
first-last\\\"\"" -batch-size 2 -R MAJ
Relation: spotify-23211267
Instances: 21812
Attributes: 13
 danceability
 energy
 key
 loudness
 mode
 speechiness
 acousticness
 instrumentalness
 liveness
 valence
 tempo
 duration_ms
 playlist_genre
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Vote combines the probability distributions of these base learners:
 weka.classifiers.trees.J48 -C 0.25 -M 2
 weka.classifiers.meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 -I 16 -W
weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0
 weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -
S 0 -E 20 -H a
 weka.classifiers.lazy.IBk -K 1 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R
first-last\""
using the 'Majority Voting' combination rule.
.
.
=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 12761 58.5045 %
Incorrectly Classified Instances 9051 41.4955 %
Kappa statistic 0.4806

Mean absolute error 0.166
Root mean squared error 0.4074
Relative absolute error 51.9432 %
Root relative squared error 101.9247 %
Total Number of Instances 21812

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area
PRC Area Class
 0.668 0.108 0.640 0.668 0.654 0.552 0.780
0.502 edm
 0.439 0.105 0.494 0.439 0.465 0.350 0.667
0.323 latin
 0.362 0.133 0.406 0.362 0.383 0.239 0.614
0.275 pop
 0.685 0.090 0.665 0.685 0.674 0.588 0.797
0.520 rap
 0.770 0.083 0.670 0.770 0.717 0.652 0.844
0.557 rock
Weighted Avg. 0.585 0.104 0.576 0.585 0.579 0.476 0.740
0.436

=== Confusion Matrix ===

 a b c d e <-- classified as
 3260 379 721 329 190 | a = edm
 473 1809 799 732 311 | b = latin
 844 728 1583 410 812 | c = pop
 318 574 356 3088 175 | d = rap
 198 174 441 87 3021 | e = rock

Sec$on 4

Bagging can ojen reduce the variance part of error and we see that as we increment bag
size by 2. I think bagging is suited to more complex runs such as: Deep Decision Trees (J48)
and NN MP with added complexity. It could be suitable for KNN when k is very low.

I do not think it is suitable for small decision trees or simple linear models.

Overall, I think it is best suited to NN MP as it can learn and model non-linear and complex
relakonships, work well when training data is noisy and fast performance once a network is
trained is possible.

However, for NN MP, many training examples is probably needed. The training kme can be
very long especially if added as a combinakon rule for vokng ensemble. It is also quite
complicated and difficult to understand the internal workings unlike some other classifiers.

Sec$on 5

0.0339 (loudness) + 0.0778 (liveness) + 0.0001 (tempo). Tempo and loudness are significant
variables for predicting energy values while liveness may not be a great source of info.

• Liveness > 0.05 so normally would accept null hypothesis or insignificant relationship
to energy.

• Loudness and Tempo < 0.05 which is significant.
• Tempo in particular seems to have a very significant relationship as it is much closer

to zero.

=== Run information ===

Scheme: weka.classifiers.functions.LinearRegression -S 1 -R 1.0E-8 -num-
decimal-places 4
Relation: spotify-23211267
Instances: 21812
Attributes: 13
 danceability
 energy
 key
 loudness
 mode
 speechiness
 acousticness
 instrumentalness
 liveness
 valence
 tempo
 duration_ms
 playlist_genre
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Linear Regression Model

energy =

 -0.1548 * danceability +
 0.0004 * key +
 0.0339 * loudness +
 -0.0028 * mode +
 0.0585 * speechiness +
 -0.2387 * acousticness +
 0.0904 * instrumentalness +
 0.0778 * liveness +

 0.1345 * valence +
 0.0001 * tempo +
 0 * duration_ms +
 0.016 * playlist_genre=pop,latin,rock,edm +
 0.0128 * playlist_genre=latin,rock,edm +
 0.0298 * playlist_genre=rock,edm +
 0.0057 * playlist_genre=edm +
 0.9101

Time taken to build model: 0.05 seconds

=== Cross-validation ===
=== Summary ===

Correlation coefficient 0.796
Mean absolute error 0.0822
Root mean squared error 0.105
Relative absolute error 58.826 %
Root relative squared error 60.5253 %
Total Number of Instances 21812

Overall the correlation coefficient is > 0.7 so this represents a strong relationship between
variables (ranges from -1 to 1 or weak to strong correlation).

The smaller the p-value is, the more significant the factor is. P-value = 0.05 is a reasonable
threshold.

The P values for tempo, loudness and liveness is < 2.2e-16, this means a significant
relationship with the response variable (energy) in the model as P value is much less than
0.05.

Call:
lm(formula = energy ~ tempo + loudness + liveness, data = spotify_23211267)

Residuals:
 Min 1Q Median 3Q Max
-0.53589 -0.08146 0.00745 0.08633 1.25599

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.834e-01 4.736e-03 186.54 <2e-16 ***
tempo 5.312e-04 3.237e-05 16.41 <2e-16 ***
loudness 3.872e-02 2.877e-04 134.57 <2e-16 ***
liveness 1.189e-01 5.382e-03 22.09 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1253 on 21808 degrees of freedom
Multiple R-squared: 0.4783, Adjusted R-squared: 0.4782
F-statistic: 6665 on 3 and 21808 DF, p-value: < 2.2e-16

 2.5 % 97.5 %
(Intercept) 0.8740980328 0.8926619375
tempo 0.0004677832 0.0005946626
loudness 0.0381533842 0.0392812685

liveness 0.1083588727 0.1294589853

0.1740097

